基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有全局与局部特征提取方法所提取的颜色特征无法有效描述画家艺术风格的问题,提出了一种基于关键区域的油画描述法.首先,通过融合主色调占比与颜色丰富度定义了油画区域信息丰富度,以检测并选取油画的关键区域.其次,提取所选油画关键区域的54维特征来描述油画,并利用Fisher Score对这些特征进行评估,选取重要的特征描述油画关键区域,从而高度体现画家艺术风格.最后,为了验证上述方法的有效性,利用朴素贝叶斯分类器实现油画的分类.建立两个数据库进行仿真实验,数据库1包含3位画家的120幅作品,数据库2包含9位画家3种流派的513幅作品.数据库1上的实验结果表明,结合Fisher Score特征描述的分类正确率高于普通分类的正确率,所提方法依据画家与流派的油画分类正确率分别达到了90%与90.20%.数据库2上的实验结果表明,所提方法根据画家的油画分类正确率达到了90%,相较Features-FS的正确率提高了6.67个百分点;依据流派分类的结果正确率达到了90.20%,与Features-FS的正确率相当.所提的基于关键区域的油画描述法所提取的特征能够有效描述画家的艺术风格.
推荐文章
摄影艺术与绘画艺术的艺术风格
绘画
摄影
艺术风格
影响摄影艺术风格的外在因素
摄影艺术
绘画艺术
超现实主义
基于直方图的水墨画艺术风格研究
水墨画
特征提取
BP神经网络
直方图
音乐指挥艺术风格的形成研究
音乐家
指挥艺术风格
形成研究
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于颜色特征的画家艺术风格提取方法
来源期刊 计算机应用 学科 工学
关键词 油画分类 关键区域 信息丰富度 颜色风格 FisherScore
年,卷(期) 2020,(6) 所属期刊栏目 虚拟现实与多媒体计算
研究方向 页码范围 1818-1823
页数 6页 分类号 TP391.41
字数 8182字 语种 中文
DOI 10.11772/j.issn.1001-9081.2019111886
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄樟灿 武汉理工大学理学院 75 570 12.0 20.0
2 王栖榕 武汉理工大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (36)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(1)
  • 二级参考文献(0)
1960(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(10)
  • 参考文献(3)
  • 二级参考文献(7)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
油画分类
关键区域
信息丰富度
颜色风格
FisherScore
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
论文1v1指导