基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像训练样本较少、光谱维度高导致分类精度较低的问题,提出一种利用改进多尺度三维残差卷积神经网络的高光谱图像分类方法.选择合适的卷积步长对网络首层光谱降维并提取浅层特征,使用三维卷积滤波器组中最大池化层减少整体网络训练参数量,改进多尺度滤波器组和三维残差单元提取图像深层局部空间-光谱联合特征,并将其输入Softmax函数层预测类别标签样本.实验结果表明,该方法在Indian Pines和Pavia University高光谱数据集上的总体分类精度分别为99.33%和99.83%,与SVM、SAE等方法相比,分类判别特征提取更准确,具有更高的图像分类精度.
推荐文章
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
一种改进的深度残差网络行人检测方法
行人识别
深度残差网络
YOLOv2
卷积神经网络
深度学习
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
一种改进的三维人脸重建方法
径向基函数
特征点
参数值
二次平滑
三维人脸模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进多尺度三维残差网络的高光谱图像分类方法
来源期刊 计算机工程 学科 工学
关键词 三维卷积块 卷积神经网络 高光谱图像 多尺度滤波器 残差单元
年,卷(期) 2020,(12) 所属期刊栏目 图形图像处理
研究方向 页码范围 215-221
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0056791
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (2)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(12)
  • 参考文献(2)
  • 二级参考文献(10)
2016(12)
  • 参考文献(2)
  • 二级参考文献(10)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三维卷积块
卷积神经网络
高光谱图像
多尺度滤波器
残差单元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
论文1v1指导