作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
面对评分矩阵的数据量不断增加,解决数据稀疏问题并提高推荐准确率是关键,因此,本文提出基于SVD填充和用户特征属性聚类的混合推荐算法。首先利用SVD技术对评分矩阵拆分,并使用随机梯度下降法对空缺值填充;然后对用户特征属性聚类,以此缩小邻居节点的搜索范围;接着利用遗忘曲线思想改进用户的相似度公式,结合Jaccard系数和流行度思想改进项目的相似度公式;再将用户偏好和项目特征的维度加权融合;最后,将本文的SK-HCF算法和其他同类算法进行对比实验,并证明该算法的推荐准确率有明显提升。
推荐文章
基于自编码机和聚类的混合推荐算法
混合推荐
协同过滤
自编码机
聚类
平均绝对误差
基于TimeRBM和项目属性聚类的混合协同过滤算法
受限波尔茨曼机
时间函数
TimeRBM
项目属性聚类
基于混合属性的产品优化聚类算法
聚类
混合属性
相似性度量
动态时间弯曲
分层优化
结合用户聚类和评分偏好的推荐算法
协同过滤
降维
聚类
用户偏好
推荐系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVD填充和用户特征属性聚类的混合推荐算法
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 推荐算法 协同过滤 奇异值分解 K均值聚类 遗忘曲线
年,卷(期) 2020,(16) 所属期刊栏目
研究方向 页码范围 11-15
页数 5页 分类号 TP301.6
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦灿 武汉工程大学计算机科学与工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐算法
协同过滤
奇异值分解
K均值聚类
遗忘曲线
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2020年第9期 电脑知识与技术:学术版2020年第8期 电脑知识与技术:学术版2020年第7期 电脑知识与技术:学术版2020年第6期 电脑知识与技术:学术版2020年第5期 电脑知识与技术:学术版2020年第4期 电脑知识与技术:学术版2020年第36期 电脑知识与技术:学术版2020年第35期 电脑知识与技术:学术版2020年第34期 电脑知识与技术:学术版2020年第33期 电脑知识与技术:学术版2020年第32期 电脑知识与技术:学术版2020年第31期 电脑知识与技术:学术版2020年第30期 电脑知识与技术:学术版2020年第3期 电脑知识与技术:学术版2020年第29期 电脑知识与技术:学术版2020年第28期 电脑知识与技术:学术版2020年第27期 电脑知识与技术:学术版2020年第26期 电脑知识与技术:学术版2020年第25期 电脑知识与技术:学术版2020年第24期 电脑知识与技术:学术版2020年第23期 电脑知识与技术:学术版2020年第22期 电脑知识与技术:学术版2020年第21期 电脑知识与技术:学术版2020年第20期 电脑知识与技术:学术版2020年第2期 电脑知识与技术:学术版2020年第19期 电脑知识与技术:学术版2020年第18期 电脑知识与技术:学术版2020年第17期 电脑知识与技术:学术版2020年第16期 电脑知识与技术:学术版2020年第15期 电脑知识与技术:学术版2020年第14期 电脑知识与技术:学术版2020年第13期 电脑知识与技术:学术版2020年第12期 电脑知识与技术:学术版2020年第11期 电脑知识与技术:学术版2020年第10期 电脑知识与技术:学术版2020年第1期
论文1v1指导