基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Grain-size distribution data,as a substitute for measuring hydraulic conductivity(K),has often been used to get K value indirectly.With grain-size distribution data of 150 sets of samples being input data,this study combined the Artificial Neural Network technology(ANN)and Markov Chain Monte Carlo method(MCMC),which replaced the Monte Carlo method(MC)of Generalized Likelihood Uncertainty Estimation(GLUE),to establish the GLUE-ANN model for hydraulic conductivity prediction and uncertainty analysis.By means of applying the GLUE-ANN model to a typical piedmont region and central region of North China Plain,and being compared with actually measured values of hydraulic conductivity,the relative error ranges are between 1.55%and 23.53%and between 14.08%and 27.22%respectively,the accuracy of which can meet the requirements of groundwater resources assessment.The global best parameter gained through posterior distribution test indicates that the GLUEANN model,which has satisfying sampling efficiency and optimization capability,is able to reasonably reflect the uncertainty of hydrogeological parameters.Furthermore,the influence of stochastic observation error(SOE)in grain-size analysis upon prediction of hydraulic conductivity was discussed,and it is believed that the influence can not be neglected.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN
来源期刊 地下水科学与工程:英文版 学科 地球科学
关键词 Grain-size distribution Hydraulic conductivity ANN GLUE MCMC Stochastic Observation Error(SOE)
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 1-11
页数 11页 分类号 P64
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Grain-size
distribution
Hydraulic
conductivity
ANN
GLUE
MCMC
Stochastic
Observation
Error(SOE)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地下水科学与工程:英文版
季刊
2305-7068
河北省石家庄市中华北大街268号
出版文献量(篇)
277
总下载数(次)
0
总被引数(次)
0
论文1v1指导