基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Face recognition is a kind of biometric technology that recognizes identities through human faces. At first, the speed of machine recognition of human faces was slow and the accuracy was lower than manual recognition. With the rapid development of deep learning and the application of Convolutional Neural Network (CNN) in the field of face recognition, the accuracy of face recognition has greatly improved. FaceNet is a deep learning framework commo</span><span><span style="font-family:Verdana;">nly used in face recognition in recent years. FaceNet uses the deep learning model GoogLeNet, which has </span><span style="font-family:Verdana;">a high</span><span style="font-family:Verdana;"> accuracy in face recognition. However, its network structure is too large, which causes the </span><span style="font-family:Verdana;">FaceNet</span><span style="font-family:Verdana;"> to run at a low speed. Therefore, to improve the running speed without affecting the recognition accuracy of FaceNet, this paper proposes a lightweight FaceNet model based on MobileNet. This article mainly does the following works:</span></span></span><span style="font-family:""> </span><span style="font-family:Verdana;">Based on the analysis of the low running speed of FaceNet and the principle of MobileNet, a lightweight FaceNet model based on MobileNet is proposed. The model would reduce the overall calculation of the network by using deep separable convolutio</span><span style="font-family:""><span style="font-family:Verdana;">ns. In this paper, the model is trained on the CASIA-WebFace and VGGFace2 </span><span style="font-family:Verdana;">datasets,</span><span style="font-family:Verdana;"> and tested on the LFW dataset. Experimental results show that the model reduces the network parameters to a large extent while ensuring </span><span style="font-family:Verdana;">the accuracy</span><span style="font-family:Verdana;"> and hence an increase in system computing speed. The model can also perform face recognition on a specific person in the video.
推荐文章
基于局部感受野扩张D-MobileNet模型的图像分类方法
图像分类
深度神经网络
MobileNet
空洞卷积
D-MobileNet
基于MobileNet-SSD目标检测算法的硬件加速器设计
目标检测
FPGA
加速器
软硬件协同设计
基于改进MobileNet网络的人脸表情识别
MobileNet
表情识别
深度可分离卷积
支持向量机
基于PC-Based的TwinCAT数据接口研究
PC-Bases
TwinCAT 接口
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Lightweight FaceNet Based on MobileNet
来源期刊 智能科学国际期刊(英文) 学科 数学
关键词 Face Recognition Deep Learning FaceNet MobileNet
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 1-16
页数 16页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Face
Recognition
Deep
Learning
FaceNet
MobileNet
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导