原文服务方: 微电子学与计算机       
摘要:
人工智能的迅速发展使得现代卷积神经网络在图像识别和分类任务上取得了巨大成功.然而,复杂神经网络模型不断向更深层的网络结构发展,在面积、功耗受限的移动设备上部署时无法保持高性能和高精度.针对该问题,面向可编程阵列芯片(FPGA)平台提出了一种基于软硬件协同方法的MobileNet-SSD目标检测硬件加速器设计.首先采用剪枝和量化算法对原始MobileNet-SSD模型进行压缩,其中剪枝是针对点卷积层参数冗余问题而提出的卷积核剪枝算法,量化则是将训练后的网络模型中的浮点数统一转换为定点数参与卷积计算.然后,设计了一种可配置的卷积计算加速阵列,通过循环分块实现不同规模网络层的多粒度并行.在此基础上,进一步设计了一种针对输入缓存的行缓存优化机制,结合直接存取存储器(DMA)和数据流接口传输数据解决传输延迟的瓶颈.实验表明,所提出的目标检测系统的性能功耗比相较于CPU和GPU分别提升了79倍和1.9倍,相比于以往工作中提出的目标检测系统具有更高的准确度和更优的性能。
推荐文章
一种KNN算法的可重构硬件加速器设计
K近邻算法
现场可编程门阵列
可重构硬件
并行计算
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
GDI函数硬件加速器设计与实现
2D图像
GDI
图像缩放
FPGA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MobileNet-SSD目标检测算法的硬件加速器设计
来源期刊 微电子学与计算机 学科 工学
关键词 目标检测 FPGA 加速器 软硬件协同设计
年,卷(期) 2022,(6) 所属期刊栏目 计算机工程与应用
研究方向 页码范围 99-107
页数 8页 分类号 TP368
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2021.1352
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
FPGA
加速器
软硬件协同设计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导