原文服务方: 微电子学与计算机       
摘要:
在FPGA上实现YOLO等目标检测算法,需要从模型量化到硬件优化等多种优化方法.为了缩短硬件延时,使用了三种技术:(1)利用层融合和位宽量化策略来降低计算复杂度;(2)利用具有padding跳过技术的基于列的流水线架构来减少启动时间;(3)利用设计空间探索算法来平衡流水线时间,提高DSP使用效率.为了验证提出的神经网络加速器架构,在ZC706 FPGA上实现了具有1 280×384输入的YOLO网络.与传统加速器相比,取得了1.97倍的延迟缩减或者1.54倍的DSP效率提升.
推荐文章
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于实时目标检测的FPGA神经网络加速器设计
来源期刊 微电子学与计算机 学科
关键词 YOLO FPGA加速器 基于列的流水线架构 低延时 高DSP效率
年,卷(期) 2020,(7) 所属期刊栏目
研究方向 页码范围 6-11
页数 6页 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贺光辉 上海交通大学电子信息与电气工程学院 25 32 3.0 4.0
2 李岑 上海交通大学电子信息与电气工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (8)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
YOLO
FPGA加速器
基于列的流水线架构
低延时
高DSP效率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导