基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脉冲神经网络是一种基于离散神经脉冲原理进行信息处理的人工神经网络,文中提出了一种基于FPGA的灵活可配的脉冲神经网络加速器架构,能够支持神经网络拓扑结构、连接权值的灵活配置.该设计首先在算法层对LIF神经元模型进行公式分解和浮点转定点两个层次的优化,并在硬件实现中采用时分复用技术将硬件中实现的8个物理神经元复用为256个逻辑神经元.神经元模电压计算采用三级流水线架构,以提高神经元数据处理效率.通过采用Xilinx XC6SLX45 FPGA实现整个神经网络加速器,工作频率可达50 MHz,并基于该加速器构建手写数字识别网络架构,实验结果表明,采用MNIST数据集作为测试样例,该网络架构准确率可达93%.
推荐文章
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
用于实时目标检测的FPGA神经网络加速器设计
YOLO
FPGA加速器
基于列的流水线架构
低延时
高DSP效率
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FPGA的脉冲神经网络加速器设计
来源期刊 电子科技 学科 工学
关键词 脉冲神经网络 LIF模型 时分复用 分类
年,卷(期) 2017,(10) 所属期刊栏目 协议·算法与仿真
研究方向 页码范围 89-92,96
页数 5页 分类号 TN912.11|TP183
字数 2973字 语种 中文
DOI 10.16180/j.cnki.issn1007-7820.2017.10.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈君成 浙江大学超大规模集成电路研究所 2 47 2.0 2.0
2 叶俊 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (13)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (16)
二级引证文献  (1)
1952(1)
  • 参考文献(1)
  • 二级参考文献(0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
脉冲神经网络
LIF模型
时分复用
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
论文1v1指导