钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用研究期刊
\
面向云端FPGA的卷积神经网络加速器的设计及其调度
面向云端FPGA的卷积神经网络加速器的设计及其调度
作者:
余洋
卢冶
蔡瑞初
钟椿荣
陈瑶
原文服务方:
计算机应用研究
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
摘要:
卷积神经网络的高计算复杂性阻碍其广泛用于实时和低功耗应用,现有软件实现方案难以满足其对运算性能与功耗的要求,传统面向FPGA的卷积神经网络构造方式具有流程复杂、周期较长和优化空间较小等问题.针对该问题,根据卷积神经网络计算模式的特点,提出一种面向云端FPGA的卷积神经网络加速器的设计及其调度机制.通过借鉴基于HLS技术、引入循环切割参数和对卷积层循环重排的设计,采用模块化方式构造网络,并进行参数拓展以进一步优化加速器处理过程;通过分析系统任务和资源的特性总结调度方案,且从控制流和数据流两方面对其进行优化设计.与其他已有工作相比,提出的设计提供了一种同时具有灵活性、低能耗、高能效和高性能的解决方案,并且探讨了加速器的高效通用调度方案.实验结果表明,该加速器可在有效提高运算整速度的同时减少功耗.
下载原文
收藏
引用
分享
推荐文章
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
一种基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列(FPGA)
ZynqNet
并行计算
加速
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
面向云端FPGA的卷积神经网络加速器的设计及其调度
来源期刊
计算机应用研究
学科
关键词
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
年,卷(期)
2020,(1)
所属期刊栏目
系统应用开发
研究方向
页码范围
172-177,182
页数
7页
分类号
TP183
字数
语种
中文
DOI
10.19734/j.issn.1001-3695.2018.05.0507
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
蔡瑞初
广东工业大学计算机学院
66
279
10.0
13.0
2
余洋
广东工业大学计算机学院
5
29
3.0
5.0
3
钟椿荣
广东工业大学计算机学院
2
12
1.0
2.0
4
卢冶
南开大学计算机与控制工程学院
5
39
3.0
5.0
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(84)
共引文献
(465)
参考文献
(5)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1943(1)
参考文献(0)
二级参考文献(1)
1958(1)
参考文献(0)
二级参考文献(1)
1962(1)
参考文献(0)
二级参考文献(1)
1980(1)
参考文献(0)
二级参考文献(1)
1986(1)
参考文献(0)
二级参考文献(1)
1988(1)
参考文献(0)
二级参考文献(1)
1989(1)
参考文献(0)
二级参考文献(1)
1995(1)
参考文献(0)
二级参考文献(1)
1996(2)
参考文献(0)
二级参考文献(2)
1997(1)
参考文献(0)
二级参考文献(1)
1998(4)
参考文献(0)
二级参考文献(4)
1999(1)
参考文献(0)
二级参考文献(1)
2000(2)
参考文献(0)
二级参考文献(2)
2001(1)
参考文献(0)
二级参考文献(1)
2004(1)
参考文献(0)
二级参考文献(1)
2006(4)
参考文献(0)
二级参考文献(4)
2007(2)
参考文献(1)
二级参考文献(1)
2008(2)
参考文献(0)
二级参考文献(2)
2009(4)
参考文献(0)
二级参考文献(4)
2010(1)
参考文献(0)
二级参考文献(1)
2011(3)
参考文献(0)
二级参考文献(3)
2012(10)
参考文献(0)
二级参考文献(10)
2013(8)
参考文献(0)
二级参考文献(8)
2014(6)
参考文献(0)
二级参考文献(6)
2015(12)
参考文献(1)
二级参考文献(11)
2016(12)
参考文献(1)
二级参考文献(11)
2017(5)
参考文献(2)
二级参考文献(3)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
主办单位:
四川省计算机研究院
出版周期:
月刊
ISSN:
1001-3695
CN:
51-1196/TP
开本:
大16开
出版地:
邮发代号:
创刊时间:
1984-01-01
语种:
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
期刊文献
相关文献
1.
基于FPGA的卷积神经网络加速器设计与实现
2.
稀疏卷积神经网络加速器设计
3.
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
4.
一种基于FPGA的卷积神经网络加速器设计与实现
5.
用于实时目标检测的FPGA神经网络加速器设计
6.
一种双向脉动数据流的全卷积神经网络加速器
7.
基于FPGA的卷积神经网络并行加速结构设计
8.
面向卷积神经网络的FPGA加速器架构设计
9.
基于FPGA的卷积神经网络卷积层并行加速结构设计
10.
基于FPGA的卷积神经网络加速器
11.
基于FPGA的卷积神经网络设计与实现
12.
基于BP神经网络的航炮加速器运动特性分析
13.
基于FPGA的脉冲神经网络加速器设计
14.
基于改进动态配置的FPGA卷积神经网络加速器的优化方法
15.
一种高效的稀疏卷积神经网络加速器的设计与实现
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用研究2000
计算机应用研究2001
计算机应用研究2002
计算机应用研究2003
计算机应用研究2004
计算机应用研究2005
计算机应用研究2006
计算机应用研究2007
计算机应用研究2008
计算机应用研究2009
计算机应用研究2010
计算机应用研究2011
计算机应用研究2012
计算机应用研究2013
计算机应用研究2014
计算机应用研究2015
计算机应用研究2016
计算机应用研究2017
计算机应用研究2018
计算机应用研究2019
计算机应用研究2020
计算机应用研究2022
计算机应用研究2020年第2期
计算机应用研究2020年第6期
计算机应用研究2020年第5期
计算机应用研究2020年第3期
计算机应用研究2020年第4期
计算机应用研究2020年第1期
计算机应用研究2020年第7期
计算机应用研究2020年第8期
计算机应用研究2020年第9期
计算机应用研究2020年第11期
计算机应用研究2020年第10期
计算机应用研究2020年第12期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号