原文服务方: 微电子学与计算机       
摘要:
全卷积神经网络近年来被应用于深度学习中的多个领域,其不仅能处理简单的图像分类任务,还能应用于例如物体检测、语义/图像分割以及基于生成式对抗网络的生成型任务.典型的全卷积神经网络中不仅包括了传统的卷积层,还有反卷积层,它们都是计算密集型的.现在大多数研究者大都关注卷积层的设计优化,而反卷积的加速优化很少.本文提出了一种双向脉动数据流的全卷积神经网络加速器,可以同时高效地处理普通卷积层以及反卷积层.实验中选取了多个具有代表性的全卷积神经网络模型,例如DCGAN,Cascaded-FCN等.相较于以往传统的未优化的加速方案,本文所设计的加速器平均可以达到2.8倍的加速比,并且能耗降低了46.3%.
推荐文章
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
一种基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列(FPGA)
ZynqNet
并行计算
加速
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种双向脉动数据流的全卷积神经网络加速器
来源期刊 微电子学与计算机 学科
关键词 全卷积 反卷积层 加速优化 双向脉动数据流
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 33-37
页数 5页 分类号 TN492
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许达文 合肥工业大学电子科学与应用物理学院 6 5 2.0 2.0
2 涂凯杰 合肥工业大学电子科学与应用物理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
全卷积
反卷积层
加速优化
双向脉动数据流
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导