There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.