基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With technology constantly becoming present in people’s lives, smart homes are increasing in popularity. A smart home system controls lighting, temperature, security camera systems, and appliances. These devices and sensors are connected to the internet, and these devices can easily become the target of attacks. To mitigate the risk of using smart home devices, the security and privacy thereof must be artificially smart so they can adapt based on user behavior and environments. The security and privacy systems must accurately analyze all actions and predict future actions to protect the smart home system. We propose a Hybrid Intrusion Detection (HID) system using machine learning algorithms, including random forest, X gboost, decision tree, K -nearest neighbors, and misuse detection technique.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Hybrid Intrusion Detection System for Smart Home Security Based on Machine Learning and User Behavior
来源期刊 物联网(英文) 学科 工学
关键词 Anomaly Detection Smart Home Systems Behavioral Patterns SECURITY Threats
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 10-25
页数 16页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Anomaly
Detection
Smart
Home
Systems
Behavioral
Patterns
SECURITY
Threats
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网(英文)
季刊
2161-6817
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
78
总下载数(次)
0
总被引数(次)
0
论文1v1指导