基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的物化视图选择(materialized view selection,MVS)算法评价指标单一(仅评价物化时间,过度追求物化视图的查询命中率)会导致超高维度时的维度灾难以及物化视图集频繁抖动的问题,本文提出了一种基于带权图的多维大数据模型优化算法(multi-dimensional big data model optimization,MMO),通过引入平均查询时延和膨胀率评价指标,基于带权图模型找出物化视图集的最优解.实验结果表明,本文算法在综合评分、平均查询时延、膨胀率方面均优于粒子群算法(particle swarm optimization,PSO),解决了超高维数据下的维度灾难问题,并且能够快速收敛.
推荐文章
运用多维数据模型实现数据集市
数据集市
多维数据模型
数据仓库
数据挖掘
复杂数据的多维数据模型应用研究
多维数据模型
多维对象
聚集
基于大数据挖掘的多维数据去重聚类算法分析
大数据挖掘
多维数据去重
聚类算法
数据分析
模型建立
减少冗余
基于Kylin实现大数据多维分析
大数据
KYLIN
OLAP
CUBE
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于带权图的多维大数据模型优化算法
来源期刊 陕西师范大学学报(自然科学版) 学科 工学
关键词 多维大数据 物化视图选择 视图集抖动 带权图 膨胀率
年,卷(期) 2021,(1) 所属期刊栏目 数据挖掘专题
研究方向 页码范围 22-28
页数 7页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (3)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多维大数据
物化视图选择
视图集抖动
带权图
膨胀率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导