基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> In discrete-time event history analysis, subjects are measured once each time period until they experience the event, prematurely drop out, or when the study concludes. This implies measuring event status of a subject in each time period determines whether (s)he should be measured in subsequent time periods. For that reason, intermittent missing event status causes a problem because, unlike other repeated measurement designs, it does not make sense to simply ignore the corresponding missing event status from the analysis (as long as the dropout is ignorable). </span><b><span style="font-family:Verdana;">Method:</span></b><span style="font-family:Verdana;"> We used Monte Carlo simulation to evaluate and compare various alternatives, including event occurrence recall, event (non-)occurrence, case deletion, period deletion, and single and multiple imputation methods, to deal with missing event status. Moreover, we showed the methods’ performance in the analysis of an empirical example on relapse to drug use. </span><b><span style="font-family:Verdana;">Result:</span></b><span style="font-family:Verdana;"> The strategies assuming event (non-)occurrence and the recall strategy had the worst performance because of a substantial parameter bias and a sharp decrease in coverage rate. Deletion methods suffered from either loss of power or undercoverage</span><span style="color:red;"> </span><span style="font-family:Verdana;">issues resulting from a biased standard error. Single imputation recovered the bias issue but showed an undercoverage estimate. Multiple imputations performed reasonabl</span></span><span style="font-family:Verdana;">y</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> with a negligible standard error bias leading to a gradual decrease in power. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> On the basis of the simulation resu
推荐文章
Optimizing the ratio of the spike to sample for isotope dilution analysis: a case study with seleniu
Isotope dilution method
Error propagation
Mento Carlo
Se concentration
Geological reference materials
Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Banglad
Arsenic
Groundwater
Hydrogeochemistry
Multivariate statistics
Spatial distribution
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Evaluating Methods for Dealing with Missing Outcomes in Discrete-Time Event History Analysis: A Simulation Study
来源期刊 统计学期刊(英文) 学科 数学
关键词 Missing Data DELETION IMPUTATION Retrospective Observations Survival Analysis
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 36-76
页数 41页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Missing
Data
DELETION
IMPUTATION
Retrospective
Observations
Survival
Analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导