基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
MicroRNAs (miRNAs) exert an enormous influence on cell differentiation,biological development and the onset of diseases.Because predicting potential miRNA-disease associations (MDAs) by biological experiments usually requires considerable time and money,a growing number of researchers are working on developing computational methods to predict MDAs.High accuracy is critical for prediction.To date,many algorithms have been proposed to infer novel MDAs.However,they may still have some drawbacks.In this paper,a logistic weighted profile-based bi-random walk method (LWBRW)is designed to infer potential MDAs based on known MDAs.In this method,three networks (i.e.,a miRNA functional similarity network,a disease semantic similarity network and a known MDA network) are constructed first.In the process of building the miRNA network and the disease network,Gaussian interaction profile (GIP) kernel is computed to increase the kernel similarities,and the logistic function is used to extract valuable information and protect known MDAs.Next,the known MDA matrix is preprocessed by the weighted K-nearest known neighbours (WKNKN) method to reduce the number of false negatives.Then,the LWBRW method is applied to infer novel MDAs by bi-randomly walking on the miRNA network and the disease network.Finally,the predictive ability of the LWBRW method is confirmed by the average AUC of 0.9393 (0.0061) in 5-fold cross-validation (CV) and the AUC value of 0.9763 in leave-one-out cross-validation (LOOCV).In addition,case studies also show the outstanding ability of the LWBRW method to explore potential MDAs.
推荐文章
多元线性Profile控制图
线性Profile
统计量
马尔科夫链
ICC Profile自动生成技术
色彩管理
CMM
Profile
The hydrogen and oxygen isotopic compositions of hydroxyl in clay mineral from a weathering profile:
Weathering profile
Hydrogen and oxygen isotopes
Hydroxyl
Kaolinite
绵羊中miRNA-150和miRNA-143的组织表达谱研究
miRNA-150
miRNA-143
组织表达谱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Logistic Weighted Profile-Based Bi-Random Walk for Exploring MiRNA-Disease Associations
来源期刊 计算机科学技术学报(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目 Special Section on AI Big Data Analytics in Biology and Medicine
研究方向 页码范围 276-287
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (43)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(7)
  • 参考文献(7)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(8)
  • 参考文献(8)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学技术学报(英文版)
双月刊
1000-9000
11-2296/TP
16开
北京中关村科学院南路6号 《计算机科学技术学报(英)》编辑部
1986
eng
出版文献量(篇)
2207
总下载数(次)
1
总被引数(次)
12378
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导