基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SPECT骨显像是辅助医生诊断疾病的重要手段.医生依靠手工勾画提取病灶区域的方法效率低且具有一定的主观性.针对这一问题,提出R_U-Net网络模型分割关节炎病灶,不仅能节省医生的诊断时间,还能为患者争取最佳治疗时间.为了检测模型分割效果,使用测试集中含有关节炎病灶的图像分割测试,与Mask R-CNN网络和原U-Net网络相比,R_U-Net网络对关节部位病灶分割结果有所提升,其MPA达到77.6%,MIoU指标达到75.4%.实验结果表明,基于U-Net改进的R_U-Net网络对于SPECT图像关节炎病灶分割效果更好.
推荐文章
基于深度学习的医学图像分割研究进展
医学图像分割
深度学习
卷积神经网络
综述
基于深度学习的SEM纤维图像分割方法研究
纤维材料
纤维图像分割
Mask R-CNN
深度学习
基于深度学习的油菜籽粒图像分割方法初探
油菜
籽粒
图像分割
特征提取
深度学习
基于深度学习算法的脑肿瘤CT图像特征分割技术改进
深度学习算法
脑肿瘤CT图像
特征分割技术
多模态3D-CNN
SAE结构
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的SPECT图像关节炎病灶分割
来源期刊 西北民族大学学报(自然科学版) 学科
关键词 深度学习 图像分割 SPECT图像 关节炎
年,卷(期) 2021,(1) 所属期刊栏目 信息技术|Information Technology
研究方向 页码范围 22-30,37
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1009-2102.2021.01.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (3)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
图像分割
SPECT图像
关节炎
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西北民族大学学报(自然科学版)
季刊
1009-2102
62-1188/N
大16开
兰州市西北新村1号
1980
chi
出版文献量(篇)
1696
总下载数(次)
3
总被引数(次)
5175
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导