基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.
推荐文章
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
The enhanced element enrichment in the supercritical states of granite–pegmatite systems
Granites
Pegmatites
Supercritical state
Extreme element enrichment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Review of Anomaly Detection Systems in Industrial Control Systems Using Deep Feature Learning Approach
来源期刊 工程(英文)(1947-3931) 学科 工学
关键词 ICS SCADA Unsupervised Feature Learning Deep Learning Anomaly Detection
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 30-44
页数 15页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ICS
SCADA
Unsupervised
Feature
Learning
Deep
Learning
Anomaly
Detection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程(英文)(1947-3931)
月刊
1947-3931
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
367
总下载数(次)
1
总被引数(次)
0
论文1v1指导