基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大部分的链接预测模型在挖掘节点相似性时过于依赖已知的链接信息,但在真实世界中,已知的观测链接数量通常较少.因此,为了提高模型的鲁棒性,需要提高解耦模型对链接信息的依赖并挖掘节点的潜在特征.文中考虑节点特征和链接之间的潜在关系,提出基于对抗图卷积网络的链接预测模型.首先利用节点间的相似性度量填充邻接矩阵中部分未知链接,缓解链接稀疏对图卷积模型的影响.再利用对抗网络深度挖掘节点特征和链接之间的潜在联系,降低模型对链接的依赖.在真实数据集上的实验表明,文中模型在链接预测问题上具有较好的表现力,在链接稀疏的情况下性能依旧较稳定,同时适用于大规模数据集.
推荐文章
基于轻量图卷积增强嵌入学习的点击率预测模型
点击率预测
嵌入层学习
特征交互
轻量图卷积
基于对抗生成网络的时序脑功能网络预测方法
对抗生成网络
时序链路预测
图卷积
功能磁共振
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
基于时空多图卷积网络的交通站点流量预测
智能交通
流量预测
交通站点
时空多图卷积
上下文门控单元
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对抗图卷积网络的链接预测模型
来源期刊 模式识别与人工智能 学科
关键词 链接预测 对抗网络 图卷积网络 隐空间
年,卷(期) 2021,(2) 所属期刊栏目 “网络科学与信息推荐”专题|Network Science and Information Recommendation
研究方向 页码范围 95-105
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202102001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
链接预测
对抗网络
图卷积网络
隐空间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导