原文服务方: 西安交通大学学报       
摘要:
在路况视频帧的预测领域中,针对当前大部分模型所存在的预测图像分辨率低、图像模糊和局部细节缺失等问题,提出了一种应用残差生成对抗网络的路况视频帧预测模型(RB-GAN).该模型用于在给定一段路况视频流的情况下更好地预测未来的一帧路况图像,应用多个级联的残差模块初步提取输入视频流的图像特征;利用感知网络强化对视频流中物体运动特征的提取;通过使用双重判别器提高生成对抗网络生成的图像的质量;用Adam方法来优化网络权值的深度学习过程.基于生成对抗网络这种半监督的学习框架,训练后的模型可以预测出一段路况视频流下一时刻的同输入视频流具有时空一致性的帧图像.应用车辆检测领域常用的KITTI数据集对生成对抗网络模型进行训练和测试,实验结果表明:与主要依赖于像素均值的方法相比,RB-GAN模型预测图像的分辨率提高了2~4倍,达到256像素×512像素,在图像锐度标准上提高了1~2个数量级,同时图像也更加符合人眼视觉的主观感受,所预测得到的路况视频帧图像质量更高,更具有实用性价值,可以更好地为诸如检测算法等其他下游算法提供有效的特征信息.
推荐文章
基于生成对抗网络的航班起飞风险预测
航班起飞风险预测
数据增强
生成对抗网络
神经网络
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用残差生成对抗网络的路况视频帧预测模型
来源期刊 西安交通大学学报 学科
关键词 生成对抗网络 深度学习 自动驾驶 路况视频帧预测
年,卷(期) 2018,(10) 所属期刊栏目
研究方向 页码范围 146-152,166
页数 8页 分类号 TP38
字数 语种 中文
DOI 10.7652/xjtuxb201810020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦贵和 吉林大学计算机科学与技术学院 91 779 15.0 23.0
2 袁帅 吉林大学计算机科学与技术学院 3 3 1.0 1.0
3 晏婕 吉林大学计算机科学与技术学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
深度学习
自动驾驶
路况视频帧预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
论文1v1指导