原文服务方: 西安工程大学学报       
摘要:
针对色织物缺陷检测存在难以获取大量有标记的缺陷数据、过检现象严重等问题,提出一种基于无监督对抗式学习的缺陷图像重构修复模型。首先,构造了基于生成对抗网络(generative adversarial net,GAN)的图像重构修复模型,利用叠加噪声后的无缺陷色织物样本图像训练模型,使模型能够有效重构出对应的无缺陷图像; 然后,将待测色织物样本图像输入模型得到重构图像,进一步获取待测样本与其对应重构图像之间的残差图像; 最后,通过对残差图像进行阈值分割与数学形态学运算,实现对缺陷区域的快速检测与定位。实验结果表明:该方法在不需要对缺陷样本进行标记的情况下,通过重构图像与原图之间的残差分析实现色织物的缺陷区域检测与定位。
推荐文章
应用GAN和Faster R-CNN的色织物缺陷识别
色织物
图像扩充
生成对抗网络
FasterR-CNN
缺陷识别
基于生成对抗网络的恶意域名训练数据生成
恶意域名
DGA
生成对抗网络
检测
分类
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于生成对抗网络的航班起飞风险预测
航班起飞风险预测
数据增强
生成对抗网络
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的色织物缺陷检测
来源期刊 西安工程大学学报 学科
关键词 色织物 缺陷检测 无监督学习 生成对抗网络 图像重构
年,卷(期) 2022,(1) 所属期刊栏目 纺织科学
研究方向 页码范围 1-9
页数 8页 分类号 TS101.9
字数 语种 中文
DOI 10.13338/ji.ssn.1674-649x.2022.01.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
色织物
缺陷检测
无监督学习
生成对抗网络
图像重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工程大学学报
双月刊
1674-649X
61-1471/N
大16开
1986-01-01
chi
出版文献量(篇)
3377
总下载数(次)
0
论文1v1指导