原文服务方: 计算机应用研究       
摘要:
针对实际应用中局部遮挡会影响人脸表情识别,提出一种基于生成对抗网络(GAN)的表情识别算法.先对遮挡人脸图像填补修复,再进行表情识别.其中GAN的生成器由卷积自动编码机构成,与鉴别器的对抗学习使得生成的人脸图像更加逼真;由卷积神经网络构成的鉴别器具有良好的特征提取能力,添加多分类层构成了表情分类器,避免了重新计算图像特征.为了解决训练样本不足的问题,将CelebA人脸数据集用于训练人脸填补修复,同时表情分类器的特征提取部分得到了预训练.在CK+数据集上的实验证明,填补后的人脸图像真实连贯,并取得了较高的表情识别率,尤其提高了人脸大面积遮挡的识别率.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于生成对抗网络的恶意域名训练数据生成
恶意域名
DGA
生成对抗网络
检测
分类
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的遮挡表情识别
来源期刊 计算机应用研究 学科
关键词 人脸表情识别 局部遮挡 人脸修复 生成对抗网络 卷积神经网络
年,卷(期) 2019,(10) 所属期刊栏目 图形图像技术
研究方向 页码范围 3112-3115,3120
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.06.0360
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王素琴 华北电力大学控制与计算机工程学院 16 57 5.0 6.0
2 张加其 华北电力大学控制与计算机工程学院 3 6 2.0 2.0
3 高宇豆 华北电力大学控制与计算机工程学院 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (91)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导