基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Named Entity Recognition(NER)for cyber security aims to identify and classify cyber security terms from a large number of heterogeneous multisource cyber security texts.In the field of machine learning,deep neural networks automatically learn text features from a large number of datasets,but this data-driven method usually lacks the ability to deal with rare entities.Gasmi et al.proposed a deep learning method for named entity recognition in the field of cyber security,and achieved good results,reaching an F1 value of 82.8%.But it is difficult to accurately identify rare entities and complex words in the text.To cope with this challenge,this paper proposes a new model that combines data-driven deep learning methods with knowledge-driven dictionary methods to build dictionary features to assist in rare entity recognition.In addition,based on the data-driven deep learning model,an attention mechanism is adopted to enrich the local features of the text,better models the context,and improves the recognition effect of complex entities.Experimental results show that our method is better than the baseline model.Our model is more effective in identifying cyber security entities.The Precision,Recall and F1 value reached 90.19%,86.60%and 88.36%respectively.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
基于WS-security的数据安全交换
端到端
WS-Security
SOAP消息
令牌
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Data and knowledge-driven named entity recognition for cyber security
来源期刊 网络空间安全科学与技术(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 113-125
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (1)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全科学与技术(英文版)
季刊
2096-4862
10-1537/T
eng
出版文献量(篇)
54
总下载数(次)
0
论文1v1指导