作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种改进的卷积神经网络模型,在传统卷积神经网络中加入Inception模块,提取出图像的多尺度特征,同时引入残差连接,充分利用图像的底层特征信息.在模型中加入批标准化技术与重叠池化技术,减轻模型的过拟合.最后将提取出的特征信息输入到softmax分类器进行分类.为了验证改进模型在中国绘画图像分类上的可行性和有效性,将改进模型、传统卷积神经网络模型、LeNet模型、HOG+SVM算法用于对中国绘画图像进行分类.实验结果表明,改进模型可以有效提取中国绘画图像特征信息,减轻过拟合,进而提升模型的分类精度.
推荐文章
基于CNN的中国绘画图像分类
SMOTE
ReLu + Sigmoid
卷积神经网络
中国绘画图像分类
基于卷积神经网络的中国绘画图像分类
深度学习
卷积神经网络
中国绘画
激活函数
图像分类
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于显著性信息的数字绘画图像自主分类系统
数字绘画图像
自主分类
系统设计
显著性信息
图像预处理
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的卷积神经网络模型的中国绘画图像分类方法
来源期刊 佳木斯大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 Inception模块 残差连接 批标准化
年,卷(期) 2021,(1) 所属期刊栏目 科研与实践探索
研究方向 页码范围 112-115
页数 4页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (110)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(10)
  • 参考文献(0)
  • 二级参考文献(10)
2017(12)
  • 参考文献(2)
  • 二级参考文献(10)
2018(6)
  • 参考文献(5)
  • 二级参考文献(1)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
Inception模块
残差连接
批标准化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佳木斯大学学报(自然科学版)
双月刊
1008-1402
23-1434/T
大16开
黑龙江省佳木斯市学府街148号
14-176
1983
chi
出版文献量(篇)
5218
总下载数(次)
9
总被引数(次)
12928
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导