基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对已有三元组约束的度量学习算法大多利用先验知识构建约束,一定程度上制约了度量学习算法性能的问题,本文借鉴对抗训练中样本扰动的思想,在原始样本附近学习对抗样本以构造对抗三元组约束,基于对抗三元组和原始三元组约束构建了度量学习模型,提出了对抗样本三元组约束的度量学习算法(metric learn-ing algorithm with adversarial sample triples constraints,ASTCML).实验结果表明,提出的算法既克服了已有固定约束方法受先验知识影响大的问题,也提高了分类精度,说明区分更加难以区分的三元组约束能够提升算法的性能.
推荐文章
正则半群的模糊同余三元组
模糊同余
模糊同余三元组
L(R)部分
Green等价关系
正则半群
基于三元组表表示的稀疏矩阵的快速转置算法及其改进
稀疏矩阵
压缩存储
三元组表
快速转置
时间复杂度
空间复杂度
基于三元组特征和词向量技术的中文专利侵权检测研究
专利侵权
信息抽取
词向量
相似度计算
文本处理
嵌套池化三元组卷积神经网络的行人再识别
行人再识别
嵌套池化
三元组损失函数
局部特征
间接度量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 对抗样本三元组约束的度量学习算法
来源期刊 智能系统学报 学科
关键词 机器学习 度量学习 三元组约束 对抗训练 马氏距离 样本扰动 凸优化 梯度下降
年,卷(期) 2021,(1) 所属期刊栏目 机器学习|Machine Learning
研究方向 页码范围 30-37
页数 8页 分类号 TP181
字数 语种 中文
DOI 10.11992/tis.202009050
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (10)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
度量学习
三元组约束
对抗训练
马氏距离
样本扰动
凸优化
梯度下降
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导