基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method.
推荐文章
基于 MapReduce 的 H-mine 算法
分布式数据挖掘
MapReduce
H-mine
并行化
Hadoop
处理多介质界面的改进型 Front Tracking 方法
界面拓扑结构
Front Tracking 方法
界面捕捉
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Underground Coal Mine Target Tracking via Multi-Feature Joint Sparse Representation
来源期刊 电脑和通信(英文) 学科 工学
关键词 Underground Coal Mine Sparse Representation Particle Filter Multi-Feature Target-Tracking
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 118-132
页数 15页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Underground
Coal
Mine
Sparse
Representation
Particle
Filter
Multi-Feature
Target-Tracking
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导