基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The necessity of recognizing handwritten characters is increasing day by day because of its various applications. The objective of this paper is to provide a sophisticated, effective and efficient way to recognize and classify Bangla handwritten characters. Here an extended convolutional neural network (CNN) model has been proposed to recognize Bangla handwritten characters. Our CNN model is tested on <span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">BanglalLekha-Isolated</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> dataset where there are 10 classes for digits, 11 classes for vowels and 39 classes for consonants. Our model shows accuracy of recognition as: 99.50% for Bangla digits, 93.18% for vowels, 90.00% for consonants and 92.25% for combined classes.</span>
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bangla Handwritten Character Recognition Using Extended Convolutional Neural Network
来源期刊 电脑和通信(英文) 学科 数学
关键词 Loss and Accuracy Deep Neural Network Image Classification Noise Removal CNN and HCR
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 158-171
页数 14页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Loss
and
Accuracy
Deep
Neural
Network
Image
Classification
Noise
Removal
CNN
and
HCR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导