基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前基于复合绝缘子红外图的过热缺陷检测技术中存在的工作量大、智能化程度低,以及传统的图像分割方法在复杂背景下分割不精确且泛化性能差的问题,提出了一种基于实例分割网络MaskR-CNN的复合绝缘子过热缺陷检测方法.首先,该方法为提高分割精度,借鉴CascadeR-CNN的思路对MaskR-CNN网络进行改进,并在模型训练中使用数据增强、迁移学习等方法提升网络表现.接着,该方法对深度分割网络得到的结果使用传统图像处理的骨架化等方法做进一步优化,使得最终的分割结果只覆盖复合绝缘子芯棒部分.最后,该方法直接读取红外图中自带的温度数据并转换成实际的温度值,根据DL/T664-2016《带电设备红外诊断应用规范》中的相关方法与标准实现对过热缺陷的等级判断.研究结果表明,该文提出的算法对出现严重缺陷及紧急缺陷的复合绝缘子红外图检测准确率较高,都是100%,而无过热缺陷或者一般缺陷的红外图会出现误检现象,总体上在测试集的缺陷检测中取得了93%的准确率.
推荐文章
基于Mask RCNN的绝缘子自爆缺陷检测
绝缘子
深度学习
Mask RCNN
自爆缺陷
基于改进Mask R-CNN的绝缘子目标识别方法
卷积神经网络
目标识别
开运算
绝缘子
基于Faster R-CNN的航拍图像中绝缘子识别
卷积神经网络
深度学习
FasterR-CNN
航拍图像
绝缘子识别
智能电网
基于Mask R-CNN的葡萄叶片实例分割
MaskR-CNN
实例分割
复杂背景
天气条件
葡萄叶片
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Mask R-CNN的复合绝缘子过热缺陷检测
来源期刊 中国电力 学科
关键词 图像检测 MaskR-CNN Cascade R-CNN 迁移学习 复合绝缘子 红外图 过热缺陷
年,卷(期) 2021,(1) 所属期刊栏目 电网
研究方向 页码范围 135-141
页数 7页 分类号
字数 语种 中文
DOI 10.11930/j.issn.1004-9649.202003145
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (66)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(14)
  • 参考文献(2)
  • 二级参考文献(12)
2019(14)
  • 参考文献(1)
  • 二级参考文献(13)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像检测
MaskR-CNN
Cascade R-CNN
迁移学习
复合绝缘子
红外图
过热缺陷
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国电力
月刊
1004-9649
11-3265/TM
大16开
北京市昌平区北七家镇未来科技城北区国家电网公司办公区B315
2-427
1956
chi
出版文献量(篇)
7025
总下载数(次)
12
总被引数(次)
92972
论文1v1指导