基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection method based on the improved You Only Look Once Version 3 (YOLOv3). The main contributions of this study are threefold. First, the feature extraction network of the original YOLOV3 algorithm is replaced with the VGG16 network convolution layer. Second, general convolution is transformed into depthwise separable convolution, thereby reducing the computational cost of the algorithm. Third, a residual network structure is introduced into the feature extraction network to reuse the shallow target feature information, which enhances the detailed features of the target and ensures the improvement in accuracy of small target detection performance. To evaluate the performance of the proposed method, many experiments are conducted on public SAR image datasets. For ship targets with complex backgrounds and small ship targets in the SAR image, the effectiveness of the proposed algorithm is verified. Results show that the accuracy and recall rate improved by 5.31% and 2.77%, respectively, compared with the original YOLOV3. Furthermore, the proposed model not only significantly reduces the computational effort, but also improves the detection accuracy of ship small target.
推荐文章
探讨LTE small cell回传切换策略
LTE-small cell
CSG
回传切换
延迟
Small RTOS51下CAN总线数据收发实现
CAN总线
Small RTOS51
实时操作系统
SJA1000
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel SAR Image Ship Small Targets Detection Method
来源期刊 电脑和通信(英文) 学科 工学
关键词 The SAR Images The Neural Network Ship Small Target Target Detection
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 57-71
页数 15页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
The
SAR
Images
The
Neural
Network
Ship
Small
Target
Target
Detection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导