基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对K-Means算法在文本聚类过程中易陷入局部最优,造成文本聚类结果不准确的问题,提出了一种基于改进灰狼优化算法的K-Means文本聚类方法.在对文本数据进行分词、去停用词、特征提取以及文本向量化后,通过免疫克隆选择选出精英个体,并对精英个体进行深度探索以增加灰狼种群的多样性,避免早熟收敛现象的发生;将粒子群位置更新思想与灰狼位置更新结合,降低灰狼优化算法陷入局部极值的风险;与K-Means算法结合进行文本聚类.所提算法与K-Means算法、GWO-KMeans以及IPSK-Means算法相比,其准确率、召回率和F值平均都有明显提高,文本聚类结果更可靠.
推荐文章
基于增强蜂群优化与 K-means 的文本聚类算法
蜂群算法
公平操作
克隆操作
多样性
局部提炼
文本聚类
基于Hadoop的灰狼优化K-means算法在主题发现的研究
文本聚类
K-means算法
主题发现
灰狼优化算法
分布式计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进灰狼优化算法的K-Means文本聚类
来源期刊 计算机工程与应用 学科 工学
关键词 K-Means算法 文本聚类 灰狼优化算法 免疫克隆 粒子群
年,卷(期) 2021,(1) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 188-193
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2004-0016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘成胜 73 348 9.0 14.0
2 邱少明 23 29 4.0 4.0
3 杜秀丽 30 65 5.0 6.0
4 吕亚娜 5 7 1.0 2.0
5 张斌 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (140)
共引文献  (44)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(16)
  • 参考文献(0)
  • 二级参考文献(16)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(14)
  • 参考文献(1)
  • 二级参考文献(13)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(16)
  • 参考文献(2)
  • 二级参考文献(14)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(13)
  • 参考文献(3)
  • 二级参考文献(10)
2018(9)
  • 参考文献(0)
  • 二级参考文献(9)
2019(8)
  • 参考文献(6)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-Means算法
文本聚类
灰狼优化算法
免疫克隆
粒子群
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导