原文服务方: 安徽工业大学学报(自然科学版)       
摘要:
为了解决动态文本聚类中聚类中心容易陷于局部极值点的问题,使用遗传变异思想来优化k-means算法.通过从k-means算法所产生的初始解向量中随机选取一定比例的位置,对其中的类标号进行随机变异并优化;再通过多次迭代获得了相应的优化解.实验表明在数据集相同、基本k-means算法调用次数相同的条件下,使用变异的k-means算法(mk-means)可以克服局部极值点的问题.
推荐文章
基于K-Means变异算子的混合PSO算法聚类研究
聚类分析
K-Means算法
粒子群优化算法
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变异的k-means聚类算法
来源期刊 安徽工业大学学报(自然科学版) 学科
关键词 聚类 mk-means算法 变异
年,卷(期) 2008,(4) 所属期刊栏目
研究方向 页码范围 430-434
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1671-7872.2008.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张捍东 安徽工业大学电气信息学院 80 1240 16.0 34.0
2 白志刚 安徽工业大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (43)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(5)
  • 参考文献(0)
  • 二级参考文献(5)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(7)
  • 参考文献(2)
  • 二级参考文献(5)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
mk-means算法
变异
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽工业大学学报(自然科学版)
季刊
1671-7872
34-1254/N
大16开
1984-01-01
chi
出版文献量(篇)
2161
总下载数(次)
0
总被引数(次)
11633
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导