原文服务方: 微电子学与计算机       
摘要:
提出了基于K-Means算子的混合粒子群优化算法聚类,将K-Means算法的局部搜索能力与粒子群优化算法的全局寻优搜索能力相结合,根据群体适应度变化的情况自适应调整权重,并对种群中性能较差的粒子进行交叉选择,能充分挖掘群体本身信息,又能不断引入附加信息.数据集仿真实验表明,该算法有效的克服了传统粒子群优化算法过慢收敛和K-Means算法陷入局部收敛的问题,从而得到更好的聚类效果.
推荐文章
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-Means变异算子的混合PSO算法聚类研究
来源期刊 微电子学与计算机 学科
关键词 聚类分析 K-Means算法 粒子群优化算法
年,卷(期) 2011,(7) 所属期刊栏目
研究方向 页码范围 57-60
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨晓庆 重庆大学输配电装备及系统安全与新技术国家重点实验室 3 11 2.0 3.0
2 左为恒 重庆大学输配电装备及系统安全与新技术国家重点实验室 40 240 9.0 13.0
3 李昌春 重庆大学输配电装备及系统安全与新技术国家重点实验室 27 192 9.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (58)
参考文献  (2)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类分析
K-Means算法
粒子群优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导