原文服务方: 现代电子技术       
摘要:
针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK).此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,并将学习到的隐含特征进行K-means聚类,保存初始学习参数与聚类中心;然后使用DBN对相关参数和初始聚类中心进行交叉迭代优化.用DBNOK算法分别在低维数据集和高维数据集上进行实验,结果表明,DBNOK算法聚类准确率优于标准的K-means算法和模糊均值聚类(FCM)算法.
推荐文章
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
基于K-means聚类算法的复杂网络社团发现新方法
复杂网络
社团结构
K-means聚类算法
节点关联度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度信念网络的K-means聚类算法研究
来源期刊 现代电子技术 学科
关键词 K-means算法 深度信念网络 受限玻尔兹曼机 高维数据 聚类分析 FCM算法
年,卷(期) 2019,(8) 所属期刊栏目 前沿交叉科学
研究方向 页码范围 145-150
页数 6页 分类号 TN915-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.08.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨文忠 新疆大学信息科学与工程学院 68 208 7.0 12.0
2 殷亚博 新疆大学信息科学与工程学院 6 47 3.0 6.0
3 杨慧婷 新疆大学信息科学与工程学院 4 45 3.0 4.0
4 许超英 新疆大学软件学院 4 46 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (524)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (23)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导