基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In today's modern electric vehicles, enhancing the safety-critical cyber-physical system (CPS)'s performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network (DNN) is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.
推荐文章
A hydrochemical approach to estimate mountain front recharge in an aquifer system in Tamilnadu, Indi
Mountain-front recharge
Geostatistical tools
Hydrogeochemical facies
Ionic ratio
Anthropogenic processes
Test the topographic steady state in an active mountain belt
Taiwan
Uplift
Denudation
River profile
Sediment yield
In-situ 10Be
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
Deep web接口查询能力估计
查询接口
查询能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Sensorless State Estimation for A Safety-Oriented Cyber-Physical System in Urban Driving: Deep Learning Approach
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目 PAPERS
研究方向 页码范围 169-178
页数 10页 分类号
字数 语种 英文
DOI 10.1109/JAS.2020.1003474
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (251)
共引文献  (83)
参考文献  (36)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1678(1)
  • 参考文献(0)
  • 二级参考文献(1)
1934(1)
  • 参考文献(0)
  • 二级参考文献(1)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(5)
  • 参考文献(0)
  • 二级参考文献(5)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(18)
  • 参考文献(0)
  • 二级参考文献(18)
2011(19)
  • 参考文献(0)
  • 二级参考文献(19)
2012(14)
  • 参考文献(2)
  • 二级参考文献(12)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(20)
  • 参考文献(3)
  • 二级参考文献(17)
2015(14)
  • 参考文献(5)
  • 二级参考文献(9)
2016(25)
  • 参考文献(1)
  • 二级参考文献(24)
2017(39)
  • 参考文献(5)
  • 二级参考文献(34)
2018(23)
  • 参考文献(11)
  • 二级参考文献(12)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
总被引数(次)
1766
论文1v1指导