基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为在田间复杂环境中实现对杂草和玉米植株准确实例分割和叶龄识别获取,提出一种基于改进掩码区域卷积神经网络(Mask Regions with convolutional neural network features,Mask R-CNN)的植物叶龄获取方法.具体实施为构建包含不同天气(晴天、阴天、雨后)和不同采集角度(俯视、30°斜视、45°斜视)数据集,增强数据并用作网络输入.通过更换3个特征提取网络(ResNet-50、ResNet-101、MobileNetv2)、搭建多种不同尺寸区域建议框、非极大值抑制法(Non-maximum suppression,NMS)更换为Soft-NMS算法、RoIAlign代替RoI Pooling方法提高模型精度.测试田间复杂环境下杂草和玉米图像.结果表明,以ResNet-101为特征提取网络的改进深度学习模型具有良好分割性能和鲁棒性,阴天检测精度高于晴天和雨后,30°斜视检测效果优于45°斜视和俯视.分割模型AP50为0.730,高于现有DeepMask、MNC、Mask R-CNN分割模型精度,表明该方法可提高对杂草和玉米植株的实例分割和叶龄识别精度.
推荐文章
基于Mask R-CNN的葡萄叶片实例分割
MaskR-CNN
实例分割
复杂背景
天气条件
葡萄叶片
基于改进Mask R-CNN的绝缘子目标识别方法
卷积神经网络
目标识别
开运算
绝缘子
基于Mask R-CNN的机场地面保护区航空器识别研究
跑道侵入
Mask R-CNN
航空器识别
摄像头
基于Faster R-CNN的服务机器人物品识别研究
服务机器人
深度学习
Faster R-CNN
物品识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Mask R-CNN农田杂草实例分割与叶龄识别方法
来源期刊 东北农业大学学报 学科
关键词 叶龄 分割 Mask R-CNN 机器视觉
年,卷(期) 2021,(4) 所属期刊栏目 研究报告|Research Report
研究方向 页码范围 65-76
页数 12页 分类号 TP391.4|S451
字数 语种 中文
DOI 10.3969/j.issn.1005-9369.2021.04.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (188)
共引文献  (75)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(16)
  • 参考文献(0)
  • 二级参考文献(16)
2015(16)
  • 参考文献(0)
  • 二级参考文献(16)
2016(20)
  • 参考文献(0)
  • 二级参考文献(20)
2017(26)
  • 参考文献(3)
  • 二级参考文献(23)
2018(26)
  • 参考文献(3)
  • 二级参考文献(23)
2019(15)
  • 参考文献(6)
  • 二级参考文献(9)
2020(8)
  • 参考文献(4)
  • 二级参考文献(4)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
叶龄
分割
Mask R-CNN
机器视觉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北农业大学学报
月刊
1005-9369
23-1391/S
大16开
哈尔滨市木材街59号
14-47
1957
chi
出版文献量(篇)
4521
总下载数(次)
9
总被引数(次)
44139
论文1v1指导