基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高分辨率遥感图像大部分情况下包含相对来说较为复杂的语义信息以及容易混淆的目标,对高分辨率遥感图像进行语义分割是一项很重要并且具有挑战性的任务。近几年来,深度卷积神经网络(Deep Convolutional Neural Network, DCNN)为代表并结合条件随机场(Conditional Random Field, CRF)的算法在图像分割领域中有着杰出的表现。本文基于DeepLap V3+网络结构,结合DCNN,设计出了一种针对高分辨率遥感图像的语义分割网络,仿真实验结果验证了该方法的有效性和鲁棒性。
推荐文章
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的遥感图像语义分割方法研究
来源期刊 计算机科学与应用 学科 工学
关键词 卷积神经网络 条件随机场 图像语义分割 DeepLap V3+ 深度学习
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 356-369
页数 14页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
条件随机场
图像语义分割
DeepLap
V3+
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与应用
月刊
2161-8801
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1319
总下载数(次)
15
总被引数(次)
0
论文1v1指导