基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SimRank方法是一种基于图的拓扑结构信息来衡量任意两个对象间相似程度的方法,针对在真实的大规模社交网络中节点与节点之间的迭代计算过程需要消耗大量的时间,提出了一种基于SimRank全局矩阵平滑收敛的网络社区发现方法(SimRank global smooth convergence,SGSC).首先,该算法通过经典度量来识别网络中的初始核心节点;然后利用矩阵平滑收敛来计算SimRank得到最终核心节点;最后,基于全局收敛矩阵,将社区聚集在核心节点周围,使用Closeness指数合并两个社区,通过递归的重复该过程,聚类出最终社区.在3种真实的不同规模的社交网络中将SGSC和其他2种具有代表性的方法进行比较,并验证了提出的算法在不同规模的社交网络中社区划分的准确率和算法运行的时间性能上有所提升.
推荐文章
基于联合矩阵分解的动态异质网络社区发现方法
异质网络
动态网络
社区发现
非负矩阵分解
基于连边距离矩阵的重叠社区发现
复杂网络
重叠社团发现
连边距离
随机游走
基于分块矩阵的投影型神经网络收敛性分析
神经网络
凸二次规划
投影算子
指数收敛
基于联合矩阵分解的动态异质网络社区发现方法
异质网络
动态网络
社区发现
非负矩阵分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SimRank全局矩阵平滑收敛的网络社区发现
来源期刊 数据采集与处理 学科
关键词 社区发现 SimRank 矩阵迭代 聚类
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 314-323
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.16337/j.1004-9037.2021.02.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (4)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社区发现
SimRank
矩阵迭代
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导