基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为减小数控机床热误差对加工精度的影响,实现对热误差的补偿控制,提出一种基于遗传算法(GA)优化的最小二乘支持向量机(LSSVM)数控机床热误差建模方法.利用遗传算法优化选择LSSVM惩罚因子C和核函数参数σ2,构建针对某卧式加工中心主轴热误差的GA-LSSVM模型.根据该模型得到热误差的模拟值和测量值对比曲线,通过分析发现GA-LSSVM模型性能较好,模型残差较小,预测精度较高.建立热误差LSSVM模型和传统BP模型并与GA-LSSVM模型作对比,结果表明:GA-LSSVM模型绝对残差δ及均方误差MSE均为最小,模型决定系数R2最大,验证了GA-LSSVM建模方法的有效性.
推荐文章
数控机床动压主轴的热误差建模技术研究
时序相关分析
雷诺方程
有限差分法
热误差
数控机床热误差实时补偿
数控机床
热误差
多元线性回归方程
误差补偿技术
基于BP神经网络的数控机床综合误差补偿方法
BP神经网络
陡度因子
放大因子
误差补偿
基于改进LSSVM算法的数控机床热误差建模研究
数控机床
热误差建模
提升小波
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-LSSVM的数控机床热误差建模方法研究
来源期刊 机床与液压 学科 工学
关键词 最小二乘支持向量机 热误差 遗传算法 数控机床
年,卷(期) 2021,(2) 所属期刊栏目 试验与研究
研究方向 页码范围 26-30
页数 5页 分类号 TP205
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.02.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (66)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
热误差
遗传算法
数控机床
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
论文1v1指导