基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Predicting trip purpose from comprehensive and continuous smart card data is beneficial for transport and city planners in investigating travel behaviors and urban mobility. Here, we propose a framework, ActivityNET, using Machine Learning (ML) algorithms to predict passen-gers' trip purpose from Smart Card (SC) data and Points-of-Interest (POIs) data. The feasibility of the framework is demonstrated in two phases. Phase I focuses on extracting activities from individuals' daily travel patterns from smart card data and combining them with POIs using the proposed"activity-POIs consolidation algorithm". Phase Ⅱ feeds the extracted features into an Artificial Neural Network (ANN) with multiple scenarios and predicts trip purpose under primary activities (home and work) and secondary activities (entertainment, eating, shopping, child drop-offs/pick-ups and part-time work) with high accuracy. As a case study, the proposed ActivityNET framework is applied in Greater London and illustrates a robust competence to predict trip purpose. The promising outcomes demonstrate that the cost-effective framework offers high predictive accuracy and valuable insights into transport planning.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 ActivityNET:Neural networks to predict public transport trip purposes from individual smart card data and POIs
来源期刊 地球空间信息科学学报(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 Articles
研究方向 页码范围 711-721
页数 11页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
地球空间信息科学学报(英文版)
季刊
1009-5020
42-1610/P
16开
武汉市珞瑜路129号武汉大学测绘校区
1998
eng
出版文献量(篇)
958
总下载数(次)
0
总被引数(次)
2719
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导