基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统建筑表面裂缝缺陷中存在识别效率低下、且识别精度较低的问题,为此,提出了基于深度学习的建筑表面裂缝缺陷识别方法.首先采集建筑表面裂缝缺陷的图像数据,然后将采集图像采样与量化,以实现缺陷图像的数字化处理.将上述数字化后的图像数据进行阈值分割、滤波以及以及增强等,完成建筑表面图像的预处理;构建R-CNN深度学习模型,模型结构分为四部分,包括输入图像模块、生成模块、提取卷积特征模块以及分类和边框回归模块.将建筑表面裂缝图像输入构建的深度学习模型中,完成建筑表面裂缝缺陷的识别.实验结果表明,采用所提方法识别建筑表面裂缝缺陷的效率较高,且识别的精度较好.
推荐文章
基于深度学习算法的带钢表面缺陷识别
带钢表面
深度学习
分类准确性
缺陷识别
基于深度主动学习的磁片表面缺陷检测
卷积神经网络
主动学习
缺陷检测
基于深度学习的磁芯表面缺陷检测研究
磁芯
缺陷检测
深度卷积生成对抗网络
图像融合
深度学习
基于新型深度神经网络的民机表面缺陷识别
民航飞机
表面缺陷识别
残差
Inception-net
深度神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的建筑表面裂缝缺陷识别
来源期刊 齐齐哈尔大学学报(自然科学版) 学科
关键词 深度学习 建筑表面裂缝 缺陷识别 阈值分割 卷积特征模块
年,卷(期) 2021,(5) 所属期刊栏目
研究方向 页码范围 57-61,66
页数 6页 分类号 TU755.7|TP399
字数 语种 中文
DOI 10.3969/j.issn.1007-984X.2021.05.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (155)
共引文献  (6)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(20)
  • 参考文献(0)
  • 二级参考文献(20)
2016(16)
  • 参考文献(0)
  • 二级参考文献(16)
2017(24)
  • 参考文献(0)
  • 二级参考文献(24)
2018(20)
  • 参考文献(0)
  • 二级参考文献(20)
2019(19)
  • 参考文献(7)
  • 二级参考文献(12)
2020(9)
  • 参考文献(9)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
建筑表面裂缝
缺陷识别
阈值分割
卷积特征模块
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
齐齐哈尔大学学报(自然科学版)
双月刊
1007-984X
23-1419/N
大16开
齐齐哈尔市文化大街42号
14-103
1979
chi
出版文献量(篇)
3573
总下载数(次)
8
总被引数(次)
8631
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导