基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Brain decoding based on functional magnetic resonance imaging has recently enabled the identification of visual perception and mental states.However,due to the limitations of sample size and the lack of an effective reconstruction model,accurate reconstruction of natural images is still a major challenge.The current,rapid development of deep learning models provides the possibility of overcoming these obstacles.Here,we propose a deep learning-based framework that includes a latent feature extractor,a latent feature decoder,and a natural image generator,to achieve the accurate reconstruction of natural images from brain activity.The latent feature extractor is used to extract the latent features of natural images.The latent feature decoder predicts the latent features of natural images based on the response signals from the higher visual cortex.The natural image generator is applied to generate reconstructed images from the predicted latent features of natural images and the response signals from the visual cortex.Quantitative and qualitative evaluations were conducted with test images.The results showed that the reconstructed image achieved comparable,accurate reproduction of the presented image in both high-level semantic category information and low-level pixel information.The framework we propose shows promise for decoding the brain activity.
推荐文章
Are spatial distributions of major elements in soil influenced by human landscapes?
Major elements
Spatial distribution
Geographical background
Human landscape
Geographic information system
Remote sensing
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Natural Image Reconstruction from Human Brain Activity Based on Conditional Progressively Growing Generative Adversarial Networks
来源期刊 神经科学通报(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目 Original Articles
研究方向 页码范围 369-379
页数 11页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (1)
参考文献  (28)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
神经科学通报(英文版)
双月刊
1673-7067
31-1975/R
16开
上海市岳阳路319号31B楼405室
4-608
1985
eng
出版文献量(篇)
2003
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导