基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry. It has been progressively utilized in numerous applications, particularly in intelligent surveillance systems. It allows the deployment of smart cameras or optical sensors with computer vision techniques, which may serve in several object detection and tracking tasks. These tasks have been considered challenging and high-level perceptual problems, frequently dominated by relative information about the environment, where main concerns such as occlusion, illumination, background, object deformation, and object class variations are commonplace. In order to show the importance of top view surveillance, a collaborative robotics framework has been presented. It can assist in the detection and tracking of multiple objects in top view surveillance. The framework consists of a smart robotic camera embedded with the visual processing unit. The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization. The detection models are further combined with different tracking algorithms, including GOTURN, MEDIANFLOW, TLD, KCF, MIL, and BOOSTING. These algorithms, along with detection models, help to track and predict the trajectories of detected objects. The pre-trained models are employed; therefore, the generalization performance is also investigated through testing the models on various sequences of top view data set. The detection models achieved maximum True Detection Rate 93% to 90% with a maximum 0.6% False Detection Rate. The tracking results of different algorithms are nearly identical, with tracking accuracy ranging from 90% to 94%. Furthermore, a discussion has been carried out on output results along with future guidelines.
推荐文章
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
基于谷歌TensorFlow Object Detection的"智慧"分类垃圾桶设计
垃圾智能分类
谷歌TensorFlow
Object Detection
python
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Towards Collaborative Robotics in Top View Surveillance: A Framework for Multiple Object Tracking by Detection Using Deep Learning
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(7) 所属期刊栏目 SPECIAL ISSUE ON COGNITIVE COMPUTING FOR COLLABORATIVE ROBOTICS
研究方向 页码范围 1253-1270
页数 18页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (30)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
总被引数(次)
1766
论文1v1指导