基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
混凝土裂隙几何信息识别的精确度,影响后期工程的安全.而传统的检测方法存在对裂隙识别不准、不全、不即时的缺陷,无法满足精度和实效性的现实需求.本文提出一种融合自注意力机制与全卷积神经网络的图像分割算法,以混凝土裂隙图像建立数据集,搭建深度学习网络;以全卷积神经网络训练模型,使用空间自注意力模块调整特征编码,输出基于自注意力机制模块识别的高精度二值图.经精准率、召回率、平均交并比和综合评价指标等维度同传统图像分割方法进行对比,结果显示,本文方法得到的混凝土裂隙二值图与原图最相近,在定量上精准率、召回率、平均交并比和综合评价指标分别达到62.93%,88.08%,72.21%和83.86%,进而验证本文提出的方法优于传统方法裂隙识别方法.
推荐文章
融合注意力机制和区域生长的裂缝识别算法研究
数字图像
裂缝识别
区域生长
注意力机制
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
多注意力机制下自愈人脸表情识别
人脸表情识别多
注意力机制
自愈
不确定性
一种基于注意力机制的语音情感识别算法研究
语音情感识别
深度学习
注意力机制
语谱图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合自注意力机制与深度学习的混凝土表面裂隙智能识别
来源期刊 铁道科学与工程学报 学科
关键词 深度学习 全卷积神经网络 自注意力机制 裂隙识别
年,卷(期) 2021,(4) 所属期刊栏目 高速铁路技术与智慧交通|High-speed Rail Technology and Intelligent Transportation
研究方向 页码范围 844-852
页数 9页 分类号 TU455
字数 语种 中文
DOI 10.19713/j.cnki.43-1423/u.T20200575
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (86)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(2)
  • 参考文献(1)
  • 二级参考文献(1)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(13)
  • 参考文献(0)
  • 二级参考文献(13)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(10)
  • 参考文献(4)
  • 二级参考文献(6)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
全卷积神经网络
自注意力机制
裂隙识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道科学与工程学报
月刊
1672-7029
43-1423/U
大16开
长沙市韶山南路22号
42-59
1979
chi
出版文献量(篇)
4239
总下载数(次)
13
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导