Development of strategies to deconstruct ligno-cellulosic biomass in tree species is essential for biofuels and biomaterials production. We applied a wood forming tissue-specific system in a hybrid poplar to express both PdSuSy (a sucrose synthase gene from Populus deltoides × P. euramericana that has not been functionally characterized) and HCHL (the hydroxycinnamoyl-CoA hydratase-lyase gene from Pseudomonas fluorescens, which inhibits lignin polymerization in Arabidopsis ). The PdSuSy - HCHL over-expression poplars correspondingly driven by the promoters of Arabidopsis AtCesA7 and AtC4H resulted in a significant increase in cellulose (> 8%), xylan (> 12%) and glucose (> 29%) content, accompanying a reduction in galacturonic acid (> 36%) content, compared to control plants. The sac-charification efficiency of these overexpression poplars was dramatically increased by up to 27%, but total lignin con-tent was unaffected. These transgenic poplars showed inhib-ited growth characteristics, including > 16% reduced plant height, > 10% reduced number of internodes, and > 18% reduced fresh weight after growth of 4 months, possibly due to relatively low expression of HCHL in secondary xylem. Our results demonstrate the structural complexity and inter-action of the cell wall polymers in wood tissue and outline a potential method to increase biomass saccharification in woody species.