基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像描述生成任务在不同场景下表现不佳的缺点,提出一种融合卷积神经网络和先验知识的多场景注意力图像描述生成算法.该算法通过卷积神经网络生成视觉语义单元,使用命名实体识别对图像场景进行识别和预测,并使用该结果自动调整自注意力机制的关键参数并进行多场景注意力计算,最后将得到的区域编码和语义先验知识插入Transformer文本生成器中指导句子的生成.结果表明,该算法有效解决了生成的描述缺少关键场景信息的问题.在MSCOCO和Flickr30k数据集上对模型进行评估,其中MSCOCO数据集的CIDEr得分达到1.210,优于同类图像描述生成模型.
推荐文章
应用细粒度分块重构的多信道图像信息分存算法
图像信息分存
分发子信息
图像置乱变换
拉格朗日分存算法
基于空间划分的细粒度并行演化算法
空间划分
最小凸集
细粒度并行演化模型
基于卷积网络的车辆定位与细粒度分类算法
卷积神经网络
细分车型识别
车牌定位
区域回归
多标签分类
基于Modbus功能码细粒度过滤算法的研究
Modbus TCP/IP协议
功能码
细粒度过滤
数据存储结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多场景融合的细粒度图像描述生成算法
来源期刊 计算机与现代化 学科
关键词 图像描述生成 卷积神经网络 命名实体识别 多场景注意力 Transformer结构
年,卷(期) 2021,(9) 所属期刊栏目 图像处理|IMAGE PROCESSING
研究方向 页码范围 1-6
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2021.09.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像描述生成
卷积神经网络
命名实体识别
多场景注意力
Transformer结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导