基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对遥感图像场景分类面临的类内差异性大、类间相似性高导致的部分场景出现分类混淆的问题,该文提出了一种基于双重注意力机制的强鉴别性特征表示方法.针对不同通道所代表特征的重要性程度以及不同局部区域的显著性程度不同,在卷积神经网络提取的高层特征基础上,分别设计了一个通道维和空间维注意力模块,利用循环神经网络的上下文信息提取能力,依次学习、输出不同通道和不同局部区域的重要性权重,更加关注图像中的显著性特征和显著性区域,而忽略非显著性特征和区域,以提高特征表示的鉴别能力.所提双重注意力模块可以与任意卷积神经网络相连,整个网络结构可以端到端训练.通过在两个公开数据集AID和NWPU45上进行大量的对比实验,验证了所提方法的有效性,与现有方法对比,分类准确率取得了明显的提升.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
注意力机制引导暗区域的低光照图像增强
深度学习
注意力机制
低光照图像
图像增强
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双重注意力机制的遥感图像场景分类特征表示方法
来源期刊 电子与信息学报 学科
关键词 遥感图像处理 场景分类 注意力机制 特征表示
年,卷(期) 2021,(3) 所属期刊栏目 遥感图像处理|Remote Sensing Image Processing
研究方向 页码范围 683-691
页数 9页 分类号 TN911.73|TP183
字数 语种 中文
DOI 10.11999/JEIT200568
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (3)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像处理
场景分类
注意力机制
特征表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导