基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视频人物关系抽取是信息抽取问题中的重要任务,在视频描述、视频检索,以及人物搜索、公安监察等方面具有重要价值.由于视频数据的底层像素与高层关系语义之间存在巨大的鸿沟,现有方法很难准确地抽取人物关系.现有研究大多通过粗粒度地分析人物共现等因素来抽取人物关系,忽略了具有丰富语义的视频中的细粒度信息.为解决现有算法难以准确、完整地抽取视频人物关系的问题,文中提出了一种基于多特征融合的细粒度视频人物关系抽取方法.首先,为了准确识别视频人物实体,提出了一种基于多特征融合的人物实体识别模型;然后,提出了一种基于细粒度特征的人物关系识别模型,该模型不仅融合了视频中人物的时空特征,而且考虑了与人物相关的细粒度物体信息特征,从而建立更好的映射关系来准确识别人物关系.以电影视频数据和SRIV人物关系识别数据集为实验数据,实验结果验证了该模型的有效性和准确性,与现有同类模型相比,所提模型的人物实体识别F1值提高了约14.4%,人物关系识别的准确率提高了约10.1%.
推荐文章
基于静态行为特征的细粒度Android恶意软件分类
Android
静态特征
细粒度恶意分类
基于朴素贝叶斯的细粒度意见挖掘
语言特征
朴素贝叶斯
细粒度
意见挖掘
条件随机场
评价要素
基于HBase的细粒度访问控制方法研究
HBase
访问控制
细粒度权限
数据库角色
基于Modbus功能码细粒度过滤算法的研究
Modbus TCP/IP协议
功能码
细粒度过滤
数据存储结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征融合的细粒度视频人物关系抽取
来源期刊 计算机科学 学科
关键词 视频分析 人物关系识别 关系抽取 深度学习 多特征融合
年,卷(期) 2021,(4) 所属期刊栏目 计算机图形学&多媒体|Computer Graphics & Multimedia
研究方向 页码范围 117-122
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.11896/jsjkx.200800160
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (4)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频分析
人物关系识别
关系抽取
深度学习
多特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
论文1v1指导