基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
长鳍金枪鱼是南太平洋渔业生产中主要的捕捞对象,准确预测其渔场分布对提高渔业捕捞效率具有重要意义.针对传统渔场预测方法预测精度低的问题,本研究提出一种基于特征交互与卷积网络的渔场预测模型——CNN-Cross.该模型引入Embedding层对数据进行处理,解决了One-Hot Encoding(独热编码)带来的特征稀疏性问题以及手动特征工程对结果的影响.同时,引入Cross网络提取特征之间的交互信息,消除了单特征对目标拟合不足的问题,并且结合CNN网络对Embedding层生成的二维特征图进行高阶隐藏信息提取,最后将两部分网络提取到的特征融合,输出分类结果.使用渔业数据对模型预测效果进行验证,结果表明,模型预测南太平洋渔场总召回率达到87.4%,中心渔场召回率达到89.4%.表明,将特征交互网络与卷积神经网络相结合可以明显提高渔场预报精度,且精度能够较好地满足现实渔业作业需求.
推荐文章
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
基于卷积神经网络的发动机故障预测方法
故障预测
深度学习
卷积神经网络(CNN)
发动机
基于轻量图卷积增强嵌入学习的点击率预测模型
点击率预测
嵌入层学习
特征交互
轻量图卷积
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征交互与卷积网络的渔场预测模型
来源期刊 江苏农业学报 学科 农学
关键词 长鳍金枪鱼 Cross网络 卷积神经网络 特征交互
年,卷(期) 2021,(6) 所属期刊栏目 畜牧兽医·水产养殖|ANIMAL HUSBANDRY AND VETERINARY SCIENCES·AQUICULTURE
研究方向 页码范围 1501-1509
页数 9页 分类号 S931.41
字数 语种 中文
DOI 10.3969/j.issn.1000-4440.2021.06.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
长鳍金枪鱼
Cross网络
卷积神经网络
特征交互
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业学报
双月刊
1000-4440
32-1213/S
大16开
南京市孝陵卫钟灵街50号省农科院内
28-113
1985
chi
出版文献量(篇)
3989
总下载数(次)
8
总被引数(次)
36498
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导