作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最近五年,卷积神经网络(CNN)得到了充分的发展,在图像分类领域,基于监督学习的算法在相关任务中取得了巨大的成功.但是与分类极为准确地粗粒度标签数据集相比,细粒度标签数据集的分类依旧是一个难点.地理图像被广泛应用于社会的各个方面,研究者往往需要对大规模的地理图像数据进行分类,但是由于地理图像的特征差异较小,因此自动化分类是相对困难的.对地理图像的细粒度特征进行标记,通过深度卷积网络对其进行训练和学习,极大地提高地理图像的分类精度.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积网络的地理图像分类研究
来源期刊 电脑与电信 学科 工学
关键词 卷积神经网络 图像分类 地理图像 细粒度
年,卷(期) 2021,(11) 所属期刊栏目 应用技术与研究
研究方向 页码范围 75-79
页数 5页 分类号 TP183|TP751
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
图像分类
地理图像
细粒度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
论文1v1指导