原文服务方: 中国医学物理学杂志       
摘要:
为解决一维深度卷积网络(1D-DCNN)在心电分类方面存在的多类疾病识别不准、难以提取最佳特征等问题,提出一种结合迁移学习与二维深度卷积网络(2D-DCNN)直接识别心电图像的方法.首先,截取R波前后75 ms内的心电信号,并将一维心电电压信号转化为二维灰度图像信号.接着,构建2D-DCNN对心电节拍样本进行分类训练,权值初始化采用在ImageNet大规模图像数据集上进行预训练的AlexNet参数值.本文提出方法在MIT-BIH心电数据库上进行性能验证,其准确率达到98%,并在不同信噪比下保持较高的准确率,证明了所述模型在心电分类上具有良好的鲁棒性.为了验证2D-DCNN的识别性能,实验部分与采用不同激活函数的1D-DCNN、近些年性能较好的深度学习方法进行比较.量化结果表明,结合迁移学习和2D-DCNN方法,比最优1D-DCNN算法,其准确率提升2%、敏感度提升0.6%、特异性提高4%;在二分类与多分类任务中,均好于现有的其他算法.
推荐文章
基于深度迁移学习的城市高分遥感影像分类
分类
卷积神经网络
深度学习
遥感影像
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合迁移学习与深度卷积网络的心电分类研究
来源期刊 中国医学物理学杂志 学科
关键词 心电节拍分类 迁移学习 深度学习 二维深度卷积网络 一维深度卷积网络 ImageNet数据集
年,卷(期) 2018,(11) 所属期刊栏目 医学信号处理与医学仪器
研究方向 页码范围 1307-1312
页数 6页 分类号 R318
字数 语种 中文
DOI 10.3969/j.issn.1005-202X.2018.011.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘颖 南方医科大学生物医学工程学院 18 63 4.0 7.0
2 杨丰 南方医科大学生物医学工程学院 52 330 11.0 15.0
6 袁绍锋 南方医科大学生物医学工程学院 5 13 2.0 3.0
10 查雪帆 南方医科大学生物医学工程学院 1 2 1.0 1.0
11 吴俣南 南方医科大学生物医学工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (15)
参考文献  (15)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1900(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
心电节拍分类
迁移学习
深度学习
二维深度卷积网络
一维深度卷积网络
ImageNet数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国医学物理学杂志
月刊
1005-202X
44-1351/R
16开
1983-01-01
chi
出版文献量(篇)
4079
总下载数(次)
0
总被引数(次)
17195
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导