基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Efforts to mitigate the COVID-19 crisis revealed that fast, accurate, and scalable testing is crucial for curbing the current impact and that of future pandemics. We propose an optical method for directly imaging unlabeled viral particles and using deep learning for detection and classification. An ultrasensitive interferometric method was used to image four virus types with nanoscale optical path-length sensitivity. Pairing these data with fluorescence images for ground truth, we trained semantic segmentation models based on U-Net, a particular type of convolutional neural network. The trained network was applied to classify the viruses from the interferometric images only, containing simultaneously SARS-CoV-2, H1N1 (influenza-A virus), HAdV (adenovirus), and ZIKV (Zika virus). Remarkably, due to the nanoscale sensitivity in the input data, the neural network was able to identify SARS-CoV-2 vs. the other viruses with 96%accuracy. The inference time for each image is 60 ms, on a common graphic-processing unit. This approach of directly imaging unlabeled viral particles may provide an extremely fast test, of less than a minute per patient. As the imaging instrument operates on regular glass slides, we envision this method as potentially testing on patient breath condensates. The necessary high throughput can be achieved by translating concepts from digital pathology, where a microscope can scan hundreds of slides automatically.
推荐文章
SARS-CoV-2变异株的遗传学特征和致病特点
SARS病毒
遗传变异
突变
毒力
新型冠状病毒
奥密克戎
合理防治SARS-CoV-2感染的思考
传染病
感染病
COVID-19
预防
治疗
合理
新型冠状病毒SARS-CoV-2感染治疗中的“老药新用”
新型冠状病毒
SARS-CoV-2
抗病毒药物
临床药物
老药新用
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity
来源期刊 光:科学与应用(英文版) 学科
关键词
年,卷(期) 2021,(9) 所属期刊栏目 Articles
研究方向 页码范围 1797-1808
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光:科学与应用(英文版)
双月刊
2095-5545
22-1404/O4
吉林省长春市东南湖大路3888号
eng
出版文献量(篇)
762
总下载数(次)
0
论文1v1指导